Measuring heat current and its fluctuations in superconducting quantum circuits

Bayan Karimi

QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland

I present recent work of the PICO group on thermodynamics of quantum systems. Superconducting circuit QED (Quantum Electro-Dynamics) presents a prominent platform for this purpose. Here, we investigate a superconducting qubit coupled between two nominally identical coplanar waveguide (CPW) resonators, each terminated by a normal-metal mesoscopic resistor as a heat bath. We observe tunable photonic heat transport through the resonator-qubit-resonator assembly when the temperatures of the two heat baths are unequal. Using a theoretical model here developed, we are able to reproduce experimental data. The reservoir-to-reservoir heat flux depends on the interplay between the qubitresonator and the resonator-reservoir couplings, yielding qualitatively dissimilar results in different coupling regimes [1].

Importantly, in order to detect noise of the heat current and single microwave quanta, one needs fast and sensitive nanocalorimetry [2]. We present non-invasive rf-thermometry based on proximitized tunnel contact between normal metal and a superconductor [3]. We expect theoretically [4] and test experimentally heat current noise both under equilibrium and non-equilibrium conditions. In the talk I present preliminary experimental results.

Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 766025. We acknowledge the facilities and technical support of Otaniemi research infrastructure for Micro and Nanotechnologies (OtaNano).

- [1] Alberto Ronzani, Bayan Karimi, Jorden Senior, Yu-Cheng Chang, Joonas Peltonen, ChiiDong Cheng, and Jukka P. Pekola, Realization of a quantum heat valve, [arXiv:1801.09312], Nature Physics (2018).
- [2] S. Gasparinetti, K. L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J. P. Pekola, Fast electron thermometry towards ultra-sensitive calorimetric detection, [arXiv:1405.7568], Physical Review Applied 3, 014007 (2015).
- [3] Bayan Karimi, Jukka P. Pekola, Non-invasive thermometer based on proximity superconductor for ultra-sensitive calorimetry, [arXiv:1807.08962] (2018).
- [4] F. Brange, P. Samuelsson, B. Karimi, J. P. Pekola, Realization of a quantum heat valve, Nanoscale Quantum Calorimetry with Electronic Temperature Fluctuations, [arXiv:1805.02728] (2018).