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Setting the Stage



Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

Macroscopic Conductor: L� d

ä Stochastic transmission

ä Diffusive transport
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Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

Mesoscopic Conductor: L ... d

ä Deterministic transmission

ä Ballistic transport

ø J. Matthews, F. Battista, D. Sánchez, P. Samuelsson, H. Linke; Phys. Rev. B 90, 165428 (2014).
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Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

Current conservation∑
α
Jα = 0

Second law

σ ≡ kB
∑

α
FαJα ≥ 0

Affinities: Fα ≡ ∆αµ/(kBT )

ä The dissipation σ provides

a universal measure for the

thermodynamic cost of the

transport process.
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Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

Long-time limit: 〈Nα〉t ˚ Jα · t
〈N2

α〉t − 〈Nα〉2t ˚ Sα · t

Mean currents and noise

Jα = lim
t→∞

∫ t

0

dt ′
〈Jαt′〉
t

Sα = lim
t→∞

∫ t

0

dt ′
∫ t

0

dt ′′
〈(Jαt′ − Jα)(Jαt′′ − Jα)〉

t

Relative uncertainty

εα ≡ Sα/J
2
α

ä The figures 1/εα quantify the precision of

the transport process.
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Thermodynamic Bounds on Precisionin Ballistic Multi-Terminal Transport

Thermodynamic Uncertainty Relation for Biomolecular Processes

Dissipation Bounds All Steady-State Current Fluctuations

Todd R. Gingrich,* Jordan M. Horowitz, Nikolay Perunov, and Jeremy L. England
Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology,

400 Technology Square, Cambridge, Massachusetts 02139, USA
(Received 15 December 2015; revised manuscript received 4 February 2016; published 21 March 2016)

Near equilibrium, small current fluctuations are described by a Gaussian distribution with a linear-
response variance regulated by the dissipation. Here, we demonstrate that dissipation still plays a dominant
role in structuring large fluctuations arbitrarily far from equilibrium. In particular, we prove a linear-
response-like bound on the large deviation function for currents in Markov jump processes. We find that
nonequilibrium current fluctuations are always more likely than what is expected from a linear-response
analysis. As a small-fluctuations corollary, we derive a recently conjectured uncertainty bound on the
variance of current fluctuations.

DOI: 10.1103/PhysRevLett.116.120601

One of the most useful insights into thermodynamics has
been that fluctuations near equilibrium are completely
characterized by just one principle: the fluctuation-
dissipation theorem [1]. Far from equilibrium, however,
fluctuations exhibit less universal structure. As such,
characterizing the rich anatomy of nonequilibrium fluctua-
tions has been handled on a case by case basis, with few
universal nonequilibrium principles. Notable exceptions
are the fluctuation theorems [2–7], as well as fluctuation-
dissipation theorems for nonequilibrium steady states
[8–12]. Recently, Barato and Seifert have proposed a
new kind of nonequilibrium principle, a thermodynamic
uncertainty relation that expresses a trade-off between the
variance of current fluctuations and the rate of entropy
production [13]. It reveals that away from equilibrium,
dissipation continues to regulate small fluctuations. While
the thermodynamic uncertainty relation was not proven in
general, analytical calculations and numerical evidence
support its validity [13]. Applications appear myriad,
and already include insights into chemical kinetics as well
as biochemical sensing [14,15].
In this Letter, we demonstrate that dissipation in fact

constrains all current fluctuations. In particular, we prove a
pair of general thermodynamic inequalities for the large
deviation function of the steady-state empirical currents in
Markov jump processes. Such processes model a variety of
scenarios, including molecular motors [16], chemical
reaction networks [17,18], and mesoscopic quantum devi-
ces [19]. Our analysis reveals that far from equilibrium,
current fluctuations are always more probable than would
be predicted by linear response [20,21]. Remarkably, our
relationship bounds even rare fluctuations (large devia-
tions), and by specializing to small deviations we obtain the
thermodynamic uncertainty relation.
We have in mind a system with N mesoscopic states (or

configurations), x ¼ 1;…; N. Transitions between pairs of
states, say from y to z, are modeled as a continuous-time

Markov jump process with rates rðy; zÞ [22]. It is conven-
ient to picture these dynamics occurring on a graph (as in
Fig. 1), with vertices denoting states and edges (or links)
symbolizing possible transitions. We assume the dynamics
to be ergodic and that rðz; yÞ > 0 whenever rðy; zÞ > 0, so
the system’s probability density relaxes to a unique steady
state πðxÞ in the long-time limit. Thermodynamics enters
by requiring the transitions to satisfy local detailed balance;
the ratio of rates on each edge can then be identified with a
generalized thermodynamic force

Fðy; zÞ ¼ ln

�
πðyÞrðy; zÞ
πðzÞrðz; yÞ

�
; ð1Þ

which quantifies the dissipation in each transition [23].
For example, if a transition were mediated by a thermal
reservoir at inverse temperature β, we have F ¼ Δsþ βq,
where Δs ¼ − ln½πðzÞ=πðyÞ� is the change in the system’s
stochastic entropy [24] and βq ¼ ln½rðy; zÞ=rðz; yÞ� is the

FIG. 1. Current fluctuations illustration: for a four-state model
(inset) in a nonequilibrium steady state, the integrated current
JT—the net number of hops between pairs of states—along each
edge is plotted as a function of time. Each integrated current
displays an average rate perturbed by stochastic fluctuations.

PRL 116, 120601 (2016) P HY S I CA L R EV I EW LE T T ER S
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0031-9007=16=116(12)=120601(5) 120601-1 © 2016 American Physical Society

ø A. C. Barato, U. Seifert; Phys. Rev. Lett. 114,

158101 (2015).

ø T. R. Gingrich, J. M. Horowitz, N. Perunov, J. L.

England; Phys. Rev. Lett. 116, 120601 (2016).

Markov jump process

σεα ≥ 2kB

Ballistic transport

ä Inertia of carriers

ä Broken time-reversal

symmetry

ä Quantum effects
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Bounding Precision



Classical Scattering Approach

Scattering map for ζE ≡ (τ, pτ )E :

SE ,B : ζinE 7→ SE ,B[ζinE ] = ζoutE

Transmission coefficients:

T αβE ,B ≡
1

h

∫
β

dζinE

∫
α

dζE δ
[
ζoutE − ζE

]
PS volume conservation∑

β
T αβE ,B =

∑
β
T βαE ,B

Time-reversal symmetry

T αβE ,B = T βαE ,−B
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Classical Scattering Approach
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Classical Scattering Approach

ä Each reservoir injects uncorrelated

and non-interacting particles into

the conductor.

Mean currents and noise

Jα =
1

h

∫ ∞
0

dE
∑
β

T αβE ,B

(
uαE − uβE

)
Sα =

1

h

∫ ∞
0

dE
∑
β 6=α

T αβE ,B

(
uαE + uβE

)
Dissipation

σ =
kB
h

∫ ∞
0

dE
∑
αβ

T αβE ,B Fα
(
uαE − uβE

)
Maxwell-Boltzmann distribution:

uαE ≡ exp[−(E − µα)/(kBT )]
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An Uncertainty Relation for Ballistic Transport

Symmetric bound (B = 0)

σεα ≥ 2kB

General bound (B 6= 0)

σεα ≥ ψ∗kB (ψ∗ ' 0.89612)

ä Breaking time-reversal symmetry by means of a magnetic field

reduces the minimal thermodynamic cost of precision by a factor ψ∗/2.

Strategy

ä Define Aα[x ] ≡ σ/kB + ψ(2Jαx + Sαx
2) with x ∈ R and ψ ∈ R+.

ä Find the largest ψ such that Aα[x ] ≥ 0.

ä Minimizing Aα[x ] with respect to x yields σεα ≥ ψkB.
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Chiral Transport

ä Strong magnetic field

B creates a chiral

steady state.

Saturation

ä Symmetric bound:

N = 2,

|F| � 1

ä General bound:

N →∞,
F ' −1.49888
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Quantum Effects



Quantum vs Classical

Mean currents and noise (C)

Jα =
1

h

∫ ∞
0

dE
∑
β

T αβE ,B

(
uαE − uβE

)
Sα =

1

h

∫ ∞
0

dE
∑
β 6=α

T αβE ,B

(
uαE + uβE

)
Maxwell-Boltzmann distribution:

uαE ≡ exp[−(E − µα)/(kBT )]

Mean currents and noise (Q)

Jα =
1

h

∫ ∞
0

dE
∑
β

T̂ αβE ,B

(
f αE − f βE

)
Sα = Scl

α − Squ
α

Fermi-Dirac distribution:

f αE ≡
(
1+exp[(E−µα)/(kBT )]

)−1

Noise components (Q)

Scl
α =

1

h

∫ ∞
0

dE
∑
β 6=α

T̂ αβE ,B

(
f αE (1− f βE ) + f βE (1− f αE )

)
≥ 0

Squ
α =

2

h

∫ ∞
0

dE
∑
βγ

tr
[
Tαβ

E ,BTαγ
E ,B

](
f αE − f βE

)(
f αE − f γE

)
≥ 0

11



Quantum vs Classical

Uncertainty components

εα = εclα − εquα εxα ≡ Sx
α/J

2
α

Semiclassical bounds

B = 0 : σεclα ≥ 2kB

B 6= 0 : σεclα ≥ ψ∗kB

ä The quantum corrections εquα
are second order in affinities

Fα and fugacities

ϕα ≡ exp [µα/(kBT)].

Perfect energy filter with ∆� kBT :

σεcl/kB = F coth[F/2]

σε/kB = F/ sinh[F/2]

ä In the deep quantum regime,

the thermodynamic cost of precision

can be reduced exponentially.
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Conclusions

ä Inertia of carriers:

Symmetric bound (B = 0)

σεα ≥ 2kB

ä Broken time-reversal symmetry:

General bound (B 6= 0)

σεα ≥ ψ∗kB (ψ∗ ' 0.89612)

ä Quantum regime:

Semiclassical bounds only

B = 0 : σεclα ≥ 2kB

B 6= 0 : σεclα ≥ ψ∗kB
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An Uncertainty Relation for Ballistic Transport: Proof 1

Strategy

ä Define Aα[x ] ≡ σ/kB + ψ(2Jαx + Sαx
2) with x ∈ R and ψ ∈ R+.

ä Find the largest ψ such that Aα[x ] ≥ 0.

ä Minimizing Aα[x ] with respect to x yields σεα ≥ ψkB.

Symmetric case: B = 0, T αβE = T βαE

Aα[x ] =
∑
β,γ 6=α

VβγDβγ
(
eDβγ − 1

)
/2

+
∑
β 6=α

Vαβ
{(
Dαβ + 2ψx

)(
eDαβ − 1

)
+ ψx2

(
eDαβ + 1

)}

Vαβ ≡
∫ ∞

0

dE T αβE uβE/h ≥ 0, Dαβ ≡ Fα −Fβ

ψmax = 2



An Uncertainty Relation for Ballistic Transport: Proof 2

Strategy

ä Define Aα[x ] ≡ σ/kB + ψ(2Jαx + Sαx
2) with x ∈ R and ψ ∈ R+.

ä Find the largest ψ such that Aα[x ] ≥ 0.

ä Minimizing Aα[x ] with respect to x yields σεα ≥ ψkB.

General case: B 6= 0,
∑
β T

αβ
E ,B =

∑
β T

βα
E ,B

Aα[x ] =
∑
β 6=α

∑
γ

VβγB

(
eDβγ − 1−Dβγ

)
+
∑
β

VαβB

{(
1 + 2ψx

)(
eDαβ − 1

)
+ ψx2

(
eDαβ + 1

)
−Dαβ

}

ψmax = min
y∈R

(1− ey + yey )(ey + 1)

(ey − 1)2
' 0.89612 & 8/9



Quantum Scattering Approach in a Nutshell

Correspondence

PS trajectory Scattering state

PS observable Hermitian operator

Scattering matrix :

SE ,B : |Ψout
Eα 〉 =

∑
β

SαβE ,B|Ψ
in
Eβ〉

Quantum transmission coefficients:

T̂ αβE ,B ≡ 2tr
[
Tαβ

E ,B

]
, Tαβ

E ,B ≡ SαβE ,B
(
SαβE ,B

)†
Unitarity∑

β
T̂ αβE ,B =

∑
β
T̂ βαE ,B

Time-reversal symmetry

T̂ αβE ,B = T̂ βαE ,−B
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