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 Maxwell’s demon (MD): Reminder                                               1.6 × 105 hits 

 The Szilard engine: Realization with a single electron           0.65 × 105 hits 

 Optimal protocol for a given extracted power 

 Role of measurement errors:  

 Thermodynamics 

  Results 

 Sketch of calculations 

 Summary & Outlook 

J. C. Maxwell (1831-1879) Maxwell's demon (1867- ) 

Maxwell's demon is a thought 
experiment created by  
James Clerk Maxwell  

in which he suggested how 
the Second Law of 

Thermodynamics might 
hypothetically be violated. 



Reminder 

MD extracts heat from a thermal reservoir by observing a 
thermodynamic system to make a spontaneous, thermally-induced, 
transition into a state with larger-than-average free energy and using 
the feedback to collect this extra free energy as work. 

Szilard demonstrated that by obtaining a single bit of information as a 
measurement result of the state of the system, one could collect up 
to 𝑇𝑇 ln 2 useful work. 
 

The unavoidable thermodynamic costs of conversion of heat into 
work by a reversible MD is the creation of information about the state 
of the measured system. 

Landauer principle: erasure of this information generates at least the extracted amount of 
heat, 𝑇𝑇 ln 2 per bit            The agreement with the second law. 



Gate 

Dot 
Electron 

At 

the energy cost vanishes ! 

Implementation: Devices based on Coulomb blockade (Single-Electron Boxes) 

Single-electron transistor (SET) 

Generic SET: 
Gates allow tuning the tunneling rates 

Γi and the potential Edot. 

Attraction to the gate 

Repulsion on the dot 

Cost: 



The Szilard engine: Realization with a single electron  

Differences with original Szilard engine: 
• The charge configuration (excess electron) is 

manipulated 
• The manipulation is performed by changing 

the potential difference between the electron 
gases in the two islands 

SET 
EM 

ng = CgVg=e
Half-integer 

1. SET electrometer 
measures where the 
excess particle is 

2. Then, ng is changed 
rapidly to capture electron 
on the corresponding 
island. 

3. Finally, ng is moved slowly 
back, extracting energy from the 
heat bath in the process, and 
completing the cycle. 



Double-dot MD: Protocol for work extracting 

The pair of the dots contains only one excess 
electron, so each dot may contain either zero 
or one excess electron; the occupancy of each 
dot can be measured, say, by SET. 

1. Begin in equilibrium with 𝑉𝑉 𝑡𝑡 = 0, so that the probability of finding the extra electron 
is equal for the two islands. 

2. Perform a measurement, and if the extra electron is found on one island, quickly raise 
the potential of the other island to some value 𝑉𝑉0 ≡ 𝑉𝑉(0+). 

3. Reduce the potential of the raised island according to some protocol 𝑉𝑉(𝑡𝑡) until time 
𝑡𝑡 = 𝜏𝜏. 
There is a probability that the electron will tunnel between the two islands, and whenever 
the electron occupies the island where the potential is being decreased, heat is extracted 
from the environment and converted to work. 

4. Then we perform measurement. After finding of an electron at a given dot we quickly 
raise the potential of the “empty” dot up to 𝑉𝑉0, and shift potential of the occupied dot to 
0, and in this way we continue the cycle. 



If the electron tunnels “uphill” 
during slow decrease of the 
potential, then the energy is 
extracted from the thermal bath. 

𝑉𝑉(𝜏𝜏) 

After finding of an electron at a given 
dot we quickly raise the potential of 
the “idle” dot up to 𝑉𝑉0, and shift 
potential of the occupied dot to 0. 
  

In this way we continue the cycle. 

𝑉𝑉0 

Perform measurement 

Protocol for work extracting: Animation 
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1. Which V(t) and τ 
correspond to minimum 

entropy production?  

2. What is the role of 
measurement errors? 

Questions 



Q1: Which V(t) and τ correspond to minimum entropy production?  
 
A:                    and any V(t) with                         . 

Q2: What is the optimal regime for a finite power of heat extraction from the 
environment? 

This is true only for vanishing power of heat extraction! 

Q3: How the strategy should 
change in the presence of 

measurement errors? 

V (¿) = 1:33

V (t)

Results   Fully optimized  - J. Bergli, Y. M. Galperin and N. B. Kopnin, Phys. Rev. E 88,   062139 (2013) 

Partly optimized: - D. Averin & J. Pekola,  Phys. Status Solidi B 254, 1600677  (2017). 

Dimensionless time 

Answer for the error-free case: 

Units: 



Measurement Feedback Erasure  

Reduces 
entropy 

Increases 
entropy 

reduces the  information →  
reduces the entropy decrease 

If no errors, the cycle can be done fully reversible. 

Measurement 
error: 

Erasure still gives increase in entropy, 
the total process becomes irreversible 

Another consequence: a bad feedback is applied, which further increases 
the entropy production if the proper protocol adapted to the expected 
error rate is not applied. 

Role of measurement errors 

We consider the effect of measurement error on a realistic single-electron box Szilard 
engine, and find the optimal protocol for the cycle as a function of the desired power 𝑃𝑃 
and error 𝜀𝜀. 



Thermodynamics and role of mutual information 

If there is a chance that the measurement result is wrong → the correlation between the 
state of the system and the state of measurement device is not perfect.  
 

That is, the mutual information, 𝐼𝐼, between the two is less than the full information of the 
logical states of the measurement device. 

Lower bound for the total work expended [Sagawa & Ueda, PRL 102, 250602 (2009)]: 

Heat, extracted by 
utilizing the information 

Although measurement errors will give a reduced mutual information, it is impossible to 
reach equality in this case. 



Simple model 

A total system (memory + system) with a phase space      , which we divide in the sub-
spaces corresponding to the logical states        . 
 
Both the device and the memory are Szilard engines → 4 logical states for 2 particles 

The phase space of each molecule is reduced to one dimension by only considering the 
movement of the molecule in the direction that the volume of the compartments 
expands/contracts and ignoring the momentum, as all processes will be 
isothermal and therefore the momentum distribution is independent of the protocol. 
Therefore a constant contribution to the internal entropy is omitted. 

The relevant part of the total phase space is then 2-dimensional, and we represent 
the position of the molecule in the system on the horizontal axis, and in the memory on 
the vertical axis. 



Simple model: Entropies 

Probability distribution of the logical states (1 bit): 
 

Conditional probability:                                                  . 

PL(i) =
X

x2Pi

P (x); i = 0 _ 1

P (xji) = P (x)=PL(i)

Total entropy: 
 
Logical entropy (information): 
 
Conditional entropy: 

The conditional entropy can be thought of as the internal physical entropy of the 
distribution for each of the logical states i. The average conditional (as we call, internal) 
entropy is 

Sin =
X

i

PL(i)S(Piji) S = H + Sin

P
Pi
A total system (memory + system) with a phase space      , which we divide in the subspaces           
       corresponding to the logical states,  𝑥𝑥 − point in the phase space. 
  

Both the device and the memory are Szilard engines → 4 logical states for 2 particles 

Simplified version of the derivation by Sagawa & Ueda, NJP (2013) 



Illustration for ideal gas in 3d box 

Free energy: 

Entropy: 

Single particle, 𝑉𝑉 ≫ 𝑁𝑁𝑉𝑉𝑞𝑞:  
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System 
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4 boxes → 4 logical states (𝑖𝑖 = 00, 01, 10,11), 2 particles 

Internal entropy for a logical state 𝑖𝑖: 

In the following we omit large constant  𝑆𝑆0. 

Probability of logical state 

Double-dot system 

 𝑥𝑥𝑆𝑆 

𝑥𝑥 𝑀𝑀
 

Landau & Lifshitz 
book 



Entropy production and measurement errors: Szilard engine 
Both the system and the memory of the measurement device is a 
single molecule of ideal gas in a container with a dividing barrier.    
 

The position of the gas molecule in the system is represented  on the 
horizontal axis and the position of the molecule in the memory on the 
vertical axis. 
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The initial state is such that the system has an 
equal probability of the particle being on the 
left or right, and the measurement not yet 
performed, so that the memory is reset to the 
left half 

We make a measurement of the 
state and store the result in the 
memory. Assuming that the 
measurement has a probability 
of 1-ε of giving the true result 
and a probability ε of giving the 
wrong result we get: 

We assume that the measurement does not affect the state of the system. 



Irreversible transition 
to configuration D: 

Irreversible entropy increase: 

Logical information: 

Mutual information: ID = HD
System + HD

Memory ¡HD

= ln 2¡ S²

Reversible transition: 

See also Sagawa & Ueda, NJP (2013) 



If the correlation is not perfect,                                                      , we should be able to reach 
this state while extracting work if we can do it reversibly.  

I < H ! Wmeasure < 0

1. Expand isothermally the memory 
      (work W is performed by the system and heat 
      Q = W is taken from the reservoir.): 

2. Measure the system, and insert the divider according to the 
result. 
There is no error in the measurement, and the correlation between the 
position of the divider and position (left/right) of the gas molecule of 
the system is perfect. ε is just a parameter describing at which point 
we insert the divider.  No entropy change 

3. Compress isothermally the memory. 
We arrive at the same final state as when there was a 
measurement with error. On the way, we have extracted 
work from the thermal bath, and the reduction of the 
environment entropy is exactly the same as the increase of 
the system entropy, so that the total entropy is constant and 
the whole process reversible. 



Energy balance:  Wmeasure = ¡TS² < 0; Werase = T ln 2

What happens when an irreversible measurement with errors takes place? 

Initial state 

Just after the measurement: Most of the initial 
states in the phase space are mapped to the 
correct final region, but a small fraction gets 
mapped to a different region, which corresponds 
to “wrong” results. For an isolated system the 
mapping A to B is deterministic and entropy is 
the same. 

We can imagine that after the time B no further 
changes of the logical states will occur - the phase 
point will never again cross the lines separating 
the different logical states. In a short time the 
phase space region where the system can be 
found will develop into some complicated shape. 
For a closed system the entropy will still be the 
same.  

A complex structure of the 
accessible phase space 
becomes indistinguishable and 
replaced by a uniform 
distribution. This step is 
irreversible; the total entropy 
increases by       S²

The equality is saturated by a reversible process. 

Lower bound for the total work expended [Sagawa & Ueda, PRL 102, 250602 (2009)]: 
Wmeasure + Werase ¸ TI



Results for the optimal protocol with errors 

The total entropy produced in a cycle: 

We minimize the entropy production rate 
 
 
 

when varying the driving protocol V(t) and the time τ, at which we perform the next 
measurement and repeat the cycle, for given extracted power, P, and error probability ε. 

 power 

The results will be presented in the dimensionless units: 



Main: the optimal period, τ, as a function of the 
power P for selected values of the error ε.  
 

There is a maximal amount of power one can 
extract,                   , as τ approaches 0. 
 

Inset:  the scaled form of the same data, with 𝜏𝜏 
as a function of 𝑃𝑃/𝑃𝑃max . 
 

As P approaches its maximum value the 
period approaches 0 linearly: 
 

Pmax(")

 

When the power P goes towards zero, the optimal period τ diverges to infinity. In other 
words, when we approach reversibility by performing the process in an infinite amount of 
time the power we can extract is zero.  
 

In the limit of low power  we find that                                                                                            . ¿ = (ln 2¡ S") =P ! Qs(") = ln 2¡ S" = I

To a very good approximation, 
 
 
where                        is the golden ratio. 

Pmax(") =
"¡ 1=2

Á
sinh [Á("¡ 1=2)] ;



Optimal protocol for 𝜀𝜀 = 0.1 and various 𝑃𝑃 

" = 0

V (¿) = 1:33

V (t)

t

For comparison:  Error-free case 

To extract maximum power one has to balance:  
 

 (i)  the amount of energy gained per tunneling event,  
 

 (ii) the probability that tunneling occurs, and  
 

 (iii) the probability of back-tunneling while reducing the potential difference. 
 

These results tells us the maximum power is reached with rapid measurements, favoring 
low probability high energy tunneling events, and a steeply sloped 𝑉𝑉(𝑡𝑡). 



As 𝑃𝑃 → 𝑃𝑃max,  the entropy production diverges as                                                . 

As                ,                           
 

For perfect measurements  𝑐𝑐0 = 0, since there is no entropy production during reversible  
 

operation. Since 
 
If there are errors, the measurement entropy 𝑆𝑆𝜀𝜀 exists even for a reversible operation. 
 

As a result 

Entropy production 

Up to the second order in P, 

Plots of c1 and c2 are shown in the inset. 

c1 = S"(ln 2¡ S")
¡1:



Role of measurement error: Plots of 𝑆𝑆𝜖𝜖/𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 

For 𝑃𝑃 → 0, we approach reversible operation 
(∆𝑆𝑆 = 0)  and all of the total entropy production is 
due to the measurement error. 
 

When 𝑃𝑃 → 𝑃𝑃max the measurement entropy 
dominates again since the there is no time for heat 
transfer from the environment when 𝜏𝜏 → 0. 
 

When the error is extremely small its effect is only 
noticeable at the boundary values of 𝑃𝑃, but even 
for minor measurement errors a significant portion 
of the entropy production is due to the 
measurement error, for all 𝑃𝑃. 

" = 0

V (¿) = 1:33

V (t)

t

Non-analytical 

behavior versus ε 

𝑉𝑉 𝜏𝜏
 



Summary of the results 

 If we make an error in a measurement, there is an associated net 
entropy production. 
For a symmetric binary measurement where the probability of 
error is ε, the entropy increases by the amount Sε.  

 We have investigated the consequences of a finite error probability on the optimal 
performance of a realistic Szilard engine at a finite (given) power. 

 We found the existence of a maximal power Pmax which is finite for error-free 
measurements, and which decreases with increasing error probability. The entropy 
production rate diverges as the maximal power is approached. 

 For small power, the entropy production rate is quadratic in P in the absence 
of errors, but changes to linear when errors are present. 

 We have also found  the time τ between measurements and the driving protocol V (t) 
minimizing the entropy production.  

 New detailed experiments are desirable. 

 This entropy increase can be understood either from a course 
graining of the phase space (for a closed system) or the 
dynamical evolutions (for an open system). 



Sketch of calculations 

_p1 = ¡¡12p1 + ¡21p2 = ¡¡p1 + ¡21;

_p2 = ¡12p1 ¡ ¡21p2 = ¡¡p2 + ¡12

Master equation: ¡ ´ ¡12 + ¡21

E1(t) ´ 0; E2(t) ´ V (t)Energies of the states: 

Wex = ¡
2X

i=1

Z ¿

0

dt pi _Ei;Extracted work per cycle: 

Change of internal energy: 

Q = ¢U + Wex =

2X

i=1

Z ¿

0

dt _piEi(t)Heat transfer: 

H = ¡
2X

i=1

pi ln piInformation entropy: 

_H = ¡
2X

i=1

_pi ln piEntropy production per cycle 

Simple model: 
 



¢H = ¡
2X

i=1

Z ¿

0

dt _pi ln piChange in information entropy per cycle: 

¢H

¿
= ¡1

¿

Z ¿

0

dt _p ln

µ
p

1¡ p

¶
; p ´ p2 = 1¡ p1

P =
Q

¿
=

1

¿

Z ¿

0

dt _pV =
1

¿

Z ¿

0

dt _p ln

µ
1

p + _p
¡ 1

¶
_p = ¡p +

1

eV + 1 Time is measured in 1/Γ;      V -> in units of T 
Master 
equation: 

Power: 

¢Stot

¿
=

¢H

¿
+

S²

¿
¡ PEntropy production: 

¡² ln ²¡ (1¡ ²) ln(1¡ ²)

It is sufficient to minimize only 

L(p; _p; ¸) =

·
¡ ln

µ
p

1¡ p

¶
+ ¸ ln

µ
1

_p + p
¡ 1

¶¸
_pLagrangian: 



Äp =
_p2( _p + p¡ 1=2)

p( _p + p¡ 1) + _p=2
;

G(¿; p; _p) ´ P ¡ 1

¿

Z ¿

0

dt _p ln

µ
1

p + _p
¡ 1

¶
= 0Power constraint: 

p(0) = ²

(@L=@ _p)t=¿ = 0Boundary condition,           :  From                                     , or p(¿)

F1 (¸; ¿; p) ´ ¸

·
ln

µ
1

p + _p
¡ 1

¶
+

_p

( _p + p¡ 1)( _p + p)

¸
¡ ln

µ
p¿

1¡ p¿

¶
= 0

@¢Stot=¿

@¿
= 0Final constraint:                                  , or 

@¢Stot

@¿
= ¸

@P

@¿
¡ 1

¿2
(¢H + S²) +

1

¿

@S¿

@¿
= 0

F2(¸; ¿; p) ´
·
ln

µ
1¡ p¿

p¿

¶
+ ¸ _p¿ ln

µ
1

p¿ + _p¿
¡ 1

¶¸
¡ ¸P ¡ 1

¿
[¢H + S²] = 0



We use Euler's method to solve the second order differential equation   for            .          
 
We find the values of      and          by using Newton's method.   
 
In this way we determine            for given extracted power,       , and measurement error,  
 
Following the master equation we find that the optimal protocol,           , of the Maxwell’s          
demon is related to            as 

¿ V0

P

p(t)

²

V = ln

µ
1

p + _p
¡ 1

¶

p(t)

p(t)
V (t)

More realistic model - NIS junction,  ∆ ≫ 𝑉𝑉 𝑡𝑡 , 𝑘𝑘𝐵𝐵𝑇𝑇: 

J. P. Pekola, O.-P. Saira, V. F. Maisi, A. Kemppinen, M. Möttönen, Y. A. Pashkin, and D. V. Averin, 
Rev. Mod. Phys. 85, 1421 (2013). 



More realistic model - NIS junction,  ∆ ≫ 𝑉𝑉 𝑡𝑡 , 𝑘𝑘𝐵𝐵𝑇𝑇: 

The tunneling rate becomes 
time-dependent through 𝑉𝑉(𝑡𝑡).  
 
It results in effective increase of 
the tunneling rate and, 
consequently, increase of the 
extracted power.  
 
This increase is limited by the 
condition  ∆ ≫ 𝑘𝑘𝐵𝐵𝑇𝑇. 
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