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Measuring temperature

• variety of thermometers
• based on physical effects
• ensure good thermal contact with medium
• secondary vs. primary
• lattice vs. electron temperature
• mK temperature range difficult



Measure total conductance 𝐺𝐺 of array
as a function of bias voltage 𝑉𝑉

Conducting island Thin (~nm) tunnel junction

Primary electron thermometry:
Jukka’s Coulomb Blockade Thermometer

Peak sharpens as
temperature falls

Primary thermometer:
V1/2 ≈ 5.44NkBT/e

𝑘𝑘𝐵𝐵𝑇𝑇 𝐸𝐸𝐶𝐶 = �𝑒𝑒2
2𝐶𝐶Σ

eV ≈ 5.44NkBTSecondary mode:
G(0) = GT( 1 – u/6 + … )
u = ( e2/CΣ )/kBT



Optimised for sub-10mK operation:

• On-chip, distributed RC filters.
• Large cooling fins (≈ 205 x 40 x 5 µm3)

provide electron-phonon coupling
• 32 × 20 arrays of Al islands

Some measurements were made with products from Aivon (Finland)

• PA-10 current source and voltage preamplifier
• Low-temperature RC filters

VTT/Aivon CBT design
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CBT fabrication

20 µm

1 µm

tunnel junction

cooling 
fins



CBT fabrication
Instead of the commonly used angle deposition, a multi-layer ex-situ process was used

Silicon substrate
SiOx

AlAl

AlxOy

Prunnila et al., J. Vac. Sci. Tech. B 5, 1026 (2010)



Measured in a commercial, 
cryogen-free dilution refrigerator
(BlueFors Cryogenics LD250)

Warmest three isotherms are fitted (simultaneously) to calibrate the CBT. 
The fit gives  𝐶𝐶Σ = 236.6 fF and 𝑅𝑅𝑇𝑇 = 22.42 kΩ

The actual temperature of the measurements does not need to be known 
because the CBT is a primary thermometer.

The fitted 𝐶𝐶Σ and 𝑅𝑅𝑇𝑇 are used to relate peak height to electron 
temperature.

CBT performance down to 7 mK
Bradley et al., Nat. Commun. 7, 10455 (2016)



The same CBT was also measured in a custom dilution refrigerator (Lancaster design)

In the commercial fridge,
base temperature (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) is 
measured using a calibrated 
RuO2 resistor.

In the custom fridge, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is 
determined from viscosity of 
the refrigerant, measured 
using a vibrating wire loop.

The CBT temperature 𝑇𝑇𝑒𝑒 matches the refrigerator temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 down to ≈ 7 mK

CBT performance down to 7 mK
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CBT immersed in 3He/4He mixture

RC filters, connected 
to sinter pad inside 

mixing chamber.

CBT package

Sintered silver heat-sink 
(x 6)

A cell was built to immerse a CBT in the mixing chamber of a dilution fridge

Vibrating 
wire

Blocks of sintered silver powder make excellent 
thermal contact with the refrigerant due to their 
high porosity and immense service area.

≈ 3 cm



Normal method: attach your sample to the coldest point of the refrigerator.

Cold metal of
refrigerator (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)

Phonons (𝑇𝑇𝑝𝑝)
(Lattice vibrations)

Electrons (𝑇𝑇𝑒𝑒)

Room-temperature 
electronics (300 K)

Sample

Parasitic heating ( ̇𝑄𝑄0)

Joule heating

Cooled wires 
(~𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)

𝑅𝑅𝐶𝐶

Problem: electron-phonon coupling is very weak in small structures at low temperatures.

�̇�𝑄 = ΣΩ 𝑇𝑇𝑒𝑒
5 − 𝑇𝑇𝑝𝑝

5

Heat flow from the electrons to the phonons:

Electrons in the sample are often at a different temperature to the phonons

= hot-electron effect

Cooling a nanoelectronic sample

F.C. Wellstood et al., PRB 59, 4952 (1994)

�̇�𝑄



CBT immersed in 3He/4He mixture

Below 7 mK, the electron temperature reported by the CBT no longer agrees with the 
temperature of the refrigerator (as measured by a vibrating wire viscometer)

⇒ Electrons and phonons not in thermal equilibrium.
Cooling through direct contact is insufficient.

Bradley et al., Nat. Commun. 7, 10455 (2016)

exponent x = 2.7

exponent x = 5



New method: cool on-chip electrons directly through the magnetocaloric effect

Cold metal of
refrigerator (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)

Phonons (𝑇𝑇𝑝𝑝)
(Lattice vibrations)

Electrons (𝑇𝑇𝑒𝑒)

Room-temperature 
electronics (300 K)

Sample

Parasitic heating ( ̇𝑄𝑄0)

Joule heating

Cooled wires 
(~𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)

𝑅𝑅𝐶𝐶

Nuclei (𝑇𝑇𝑛𝑛)

On-chip magnetic cooling

Weak electron-phonon becomes an advantage: 
electrons are isolated from their host lattice.

The bath of nuclear spins 
absorbs energy as the 
magnetic field is lowered:

High B Low B

�̇�𝑄



CBT design for on-chip cooling

Same an ex-situ tunnel junction process used

Prunnila et al., J. Vac. Sci. Tech. B 5, 1026 (2010)

Cu nuclei used as refrigerant for electrons



Sample calibration with and w/o
magnetic field



Magnetic cooling of a CBT

CBT islands are electroplated 
with copper (refrigerant)

Bradley et al., Sci. Rep. 7, 45566 (2017)

Demagnetisation of a CBT in a commercial, cryogen-free dilution refrigerator:



Magnetic cooling of a CBT

Best result: CBT cooled from 9 mK to below 5 mK for over 1000 seconds. 
Next step: target < 1 mK by starting colder and in a larger magnetic field

CBT islands are electroplated 
with copper (refrigerant)

Bradley et al., Sci. Rep. 7, 45566 (2017)

Demagnetisation of a CBT in a commercial, cryogen-free dilution refrigerator:



Modification to CBT design
for on-chip cooling
Issue: capacitance too small for ∼ 1 mK operation, CBT fully blockaded

increase by adding an extra metal layer

conformal layers

bottom: 150 nm Al2O3/TiO2
top: 35 nm AuW and 160 nm Au



Calibration with large C
taken in a home-made dilution refrigerator

𝐶𝐶Σ = 1155 ± 8 fF



Sweeps with various rates
taken in a home-made dilution refrigerator



Most recent data
taken in a home-made dilution refrigerator



Most recent data
taken in a home-made dilution refrigerator
thermally decoupled sample stage

∆t ≈ 4 hours



Summary

CBT works down to ∼1mK

Passive electron cooling down to 3.6mK
fridge temperature 2.4 mK

On-chip demag cooling down to 1.14mK

Cooled to 2mK for ∼4hours
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