Improved quasiparticle thermalization for single-electron turnstiles

J. T. Peltonen, M. Marín Suárez,

D. S. Golubev, V. F. Maisi, A. Moisio, M. Meschke, J. S. Tsai, and J. P. Pekola

20.09.2018

Outline

 background: charge pumping with metallic normal (N) – insulator (I) – superconductor (S) turnstiles

 active quasiparticle evacuation: local cooling of the S leads by a biased tunnel junction

• passive quasiparticle thermalization: thick S leads

Charge pumping with a SINIS turnstile

Quantized current *I* = *ef* produced by a solid-state singleelectron device driven periodically at frequency *f*

Requirements for metrological applications: current $\sim 100 \text{ pA}$ or larger, relative uncertainty $\sim 10^{-7}$ or better

J. P. Pekola et al., Nature Phys. 4, 120 (2008) J. P. Pekola et al., Rev. Mod. Phys. 85, 1421 (2013)

Typical 25 MHz pumping curves for an Al-Cu device

Quasiparticle-limited accuracy of the turnstile

- injected power $P_{
 m inj}pprox\Delta fpprox1.6~{
 m fW}$ (Al, 50 MHz drive for 8 pA current)
- thicker, wider and less resistive leads + more effective qp trapping needed to avoid S overheating and to approach metrological accuracy

H. S. Knowles et al., Appl. Phys. Lett. 100, 262601 (2012)

Cascade cooling of the S electrodes of a SINIS structure

Active quasiparticle evacuation: turnstile with an integrated S₁IS₂ cooler

qp cooling of the S electrode with smaller gap

Cooling by qp tunneling in an S₁IS₂ junction

FIG. 1. Calculated heat flow Q from S_2 through an ideal S_2IS_1 junction which is biased at voltage V at a constant temperature $T_{e1}=T_{e2}$ = 0.15 Δ_1/k_B , which corresponds to 0.37 K for our sample. Different lines have been calculated for $\Delta_2/\Delta_1=0$ (NIS structure; thick line), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. The cooling power diverges when $|eV| = \Delta_1 - \Delta_2$. For our sample, $\Delta_2/\Delta_1 \approx 0.29$ at T=0.37 K.

maximum cooling at $eV_{\rm SIS} = \Delta_1 - \Delta_2$

A. J. Manninen *et al.*, Appl. Phys. Lett. 74, 3020 (1999)

O. Quaranta *et al.,* Appl. Phys. Lett. 98, 032501 (2011)

D. S. Golubev *et al.,* Phys. Rev. B 87, 094522 (2013)

 $\dot{Q} = \frac{1}{e^2 R_{\rm T,SIS}} \int_{-\infty}^{\infty} dE E n_2(E) n_1(E - eV_{\rm SIS}) \left[f_2(E) - f_1(E - eV_{\rm SIS}) \right]$

Cooling by qp tunneling in an S₁IS₂ junction

 $\Delta_1 = 230 \ \mu \text{eV}$ $\Delta_2 = 180 \ \mu \text{eV}$ $T_1 = 100 \ \text{mK}$ $T_2 = 150 \ \text{mK}$ $R_{\text{T}} = 100 \ \Omega$

Quasiparticle cooling of a single-**Cooper-pair transistor** 1.0 0.5

75

 V_{SIS} (μV)

100

Turnstile with an integrated S₁IS₂ cooler

Typical pumping experiment (f = 10 MHz, dc offset $n_{g0} = 0.5$, S_1IS_2 cooler not active)

Signatures of nonequilibrium qps for a sample with high charging energy

-0.005

-0.01

0

0.2

0.4

0.6

0.8

Ag

1

1.2

1.4

model based on the orthodox theory of single-electron tunneling, assuming elevated temperature in both S electrodes

Signatures of nonequilibrium qps for a sample with high charging energy

Improved pumping step at cooler bias close to expected gap difference

Heating at high S₁IS₂ cooler bias

Strong effect in turnstiles with lower tunnel resistance

f = 80 MHz; cooler biased at 0 uV (solid) vs. 50 uV (dashed, close to expected S₁IS₂ gap difference)

Improved flatness of the *ef*-plateau

Saturation at low drive frequencies with cooler "on" due to residual qps (sample holder not well shielded), Andreev tunneling (low resistance junctions), ...?

Pumping at 80 MHz at constant amplitude

Peak structure at voltages above 100 uV resembles the sub-gap IV of the SQUID

Change in the functional form of the *ef*-plateau

f = 40 MHz; cooler biased at 0 uV (solid) vs. 50 uV (dashed)

Schematic cross-section of a conventional Al-Cu device

conventional SINIS turnstile Cu island Cu island AI + AIOx AI-AIOx-Cu NIS junction

• optimization and good control of junction resistances and charging energies needed to avoid errors due to higher order tunneling processes

$$E_{\rm C} = e^2/2C_{\Sigma} \gtrsim 2\Delta$$

Cross-section of a turnstile with thick S electrodes

- main goal: retain high charging energy independent of the S lead thickness
- suppress superconductivity on the island by Mn impurities (e-beam evaporation target Goodfellow Al 99.7 % / Mn 0.3 %)

Typical device with wide and thick leads

• 30 nm AlMn + close to 500 nm Al while retaining high charging energy

AlMn turnstile: DC characterization

- high charging energies and low sub-gap currents still possible
- simple fabrication

$$\eta = R_{\rm T}/R_0 \approx 3.5 \times 10^{-6}$$

JTP, A. Moisio, V. F. Maisi, M. Meschke, J. S. Tsai, and J. P. Pekola, arXiv:1709.09832 (2017)

AlMn turnstile: pumping

JTP, A. Moisio, V. F. Maisi, M. Meschke, J. S. Tsai, and J. P. Pekola, arXiv:1709.09832 (2017)

Conclusions

- initial investigation of direct cooling of the turnstile S leads by S₁IS₂ tunnel junctions
- turnstiles with bulky Al electrodes for more efficient qp thermalization

Future directions

- verification of low qp density in a charge counting experiment
- experiments on the limits of S₁IS₂ cooling
- floating SINIS cooling and thermometry on the turnstile electrodes