Extreme reductions of entropy in an electronic double dot

Édgar Roldán

ICTP (Trieste, Italy)

United Nations Educational, Scientific and Cultural Organization

QT60, Espoo (Finland) 19/9/18 Jukka Pekola's 60th Birthday

Nonequilibrium steady states

How far can we walk against the stream ?

Extreme excursions

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\mu V'(x_t) + \sqrt{2D}\xi_t$$

Statistics of minima

Statistics of minima

Extrema of thermodynamic fluctuations

Universal constraints for extreme thermodynamic fluctuations?

Stochastic entropy production

 $\partial_t P_t = LP_t$ We study nonequilibrium steady states with stochastic dynamics described by Fokker-Planck or Master equations

Nonequilibrium steady state

$$P_t(\vec{X}_t) \neq Z^{-1} e^{-V(\vec{X}_t)/k_{\rm B}T}$$

characterized by currents $\,J_{ij}\,$, thermodynamic forces $\,F_{ij}\,$

and entropy production
$$\sigma = \sum_{i < j} F_{ij} J_{ij} \ge 0$$

Stochastic entropy production

stochastic trajectory

$$S(t) = k_{\rm B} \ln \frac{P\left(X_{[0,t]}\right)}{P\left(X_{[t,0]}\right)}$$
time-reversed trajectory
Equilibrium : reversibility $P\left(X_{[0,t]}\right) = P\left(X_{[t,0]}\right)$ $S(t) = 0$
Non-equilibrium : irreversibility $P\left(X_{[0,t]}\right) \neq P\left(X_{[t,0]}\right)$ $S(t)$ fluctuates
Example driven colloidal system environmental entropy change

$$S(t) = -\frac{Q(t)}{T} + S(X_t) - S(X_0) \qquad system's entropy change$$

$$Q(t) = \int_0^t U'(X_s) \circ dX_s \qquad S(X) = -k_{\rm B} \ln P(X)$$
stochastic heat [Sekimoto 1998] nonequilibrium system entropy

J. Lebowitz, H. Spohn, J. Stat. Mech. 1999; U. Seifert, PRL 2005

Stochastic entropy production

Detailed Fluctuation theorem

$$\frac{p_S(s;t)}{p_S(-s;t)} = e^{s/k_{\rm B}} \qquad \langle e^{-S(t)/k_{\rm B}} \rangle = 1$$

Jarzynski's equality

Fixed time properties

Martingale theory for entropy production

I. Neri, É. Roldán, F. Jülicher, PRX **7**, 011019 (2017)

In steady state $e^{-S(t)/k_{\mathrm{B}}}$ is a Martingale process:

$$\langle e^{-S_{\rm tot}(t)/k_{\rm B}} | X_{[0,\tau]} \rangle = e^{-S_{\rm tot}(\tau)/k_{\rm B}}$$

for any future time $\,t\geq au\,$

"Its expected value in the future (conditioned on a past history) equals to the last known value"

The martingale property generalizes the Integral Fluctuation Theorem

$$\tau = 0$$
 $\langle e^{-S_{\rm tot}(t)/k_{\rm B}} \rangle = e^{-S_{\rm tot}(0)/k_{\rm B}} = 1$

...and implies new universal properties of entropy production

Martingale theory for entropy production

I. Neri, É. Roldán, F. Jülicher, PRX **7**, 011019 (2017)

Martingales are often used to represent fair games or risk-free markets.

Doob's optional stopping theorem for Martingales

Statistics of infima of entropy production

Experimental test?

Electronic double dot

Experimental setup

Entropy fluctuations in the double dot

Extreme values of stochastic entropy production

 $\Pr\left(S_{\min}(t) \ge -s\right) \le 1 - e^{-s/k_{\mathrm{B}}}$

S. Singh, É. Roldán, I. Neri, I. M. Khaymovich, D. S. Golubev, V. F. Maisi, J. T. Peltonen, F. Jülicher, J. P. Pekola, arXiv 1712.01693 (2017)

Testing "infimum law" $\langle S_{inf}(t) \rangle \geq -k_B$

S. Singh, É. Roldán, I. Neri, I. M. Khaymovich, D. S. Golubev, V. F. Maisi, J. T. Peltonen, F. Jülicher, J. P. Pekola, arXiv 1712.01693 (2017)

Universal first-passage-time distribution

S. Singh et. al, arXiv: **TODAY or TOMORROW**

non-Gaussianity

Thanks!

United Nations Educational, Scientific and

Cultural Organization .

Izaak Neri KCL London

Shilpi Singh Aalto University

Ivan Khaymovich MPIPKS Dresden

"**Dima**" **Golubev** Aalto University

Ville Maisi Lund University

Joonas Peltonen Aalto University

Frank Jülicher MPIPKS Dresden

Jukka Pekola Aalto University

Happy birthday!