Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

QT60 19-21 September 2018, Espoo, Finland

Kay Brandner

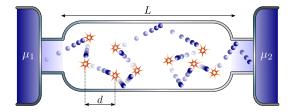
Department of Applied Physics, Aalto University

KB, T. Hanazato, K. Saito, Phys. Rev. Lett. 120, 090601 (2018)

Setting the Stage

Macroscopic Conductor: $\mathbf{L}\gg\mathbf{d}$

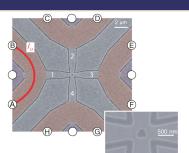
- Stochastic transmission
- Diffusive transport

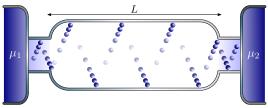


Thermodynamic Bounds on Precision in Ballistic Multi-Terminal Transport

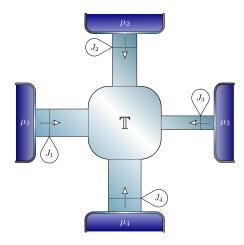
Mesoscopic Conductor: $L \lesssim d$

- > Deterministic transmission
- Ballistic transport



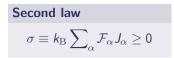


➡ J. Matthews, F. Battista, D. Sánchez, P. Samuelsson, H. Linke; Phys. Rev. B 90, 165428 (2014).



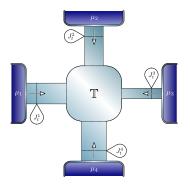
Current conservation

$$\sum_{lpha} J_{lpha} = 0$$



Affinities: $\mathcal{F}_{\alpha} \equiv \Delta_{\alpha} \mu / (k_{\rm B} T)$

> The dissipation σ provides a universal measure for the thermodynamic cost of the transport process.

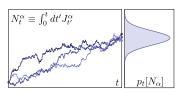


Mean currents and noise

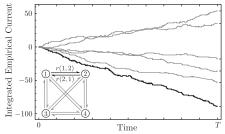
$$J_{\alpha} = \lim_{t \to \infty} \int_{0}^{t} dt' \frac{\langle J_{t'}^{\alpha} \rangle}{t}$$
$$S_{\alpha} = \lim_{t \to \infty} \int_{0}^{t} dt' \int_{0}^{t} dt'' \frac{\langle (J_{t'}^{\alpha} - J_{\alpha})(J_{t''}^{\alpha} - J_{\alpha}) \rangle}{t}$$

$$\varepsilon_{lpha}\equiv S_{lpha}/J_{lpha}^2$$

> The figures
$$1/\varepsilon_{\alpha}$$
 quantify the **precision** of the transport process.



Thermodynamic Uncertainty Relation for Biomolecular Processes



➤ A. C. Barato, U. Seifert; Phys. Rev. Lett. 114, 158101 (2015).

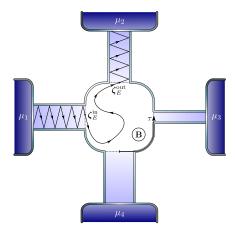
T. R. Gingrich, J. M. Horowitz, N. Perunov, J. L. England; Phys. Rev. Lett. 116, 120601 (2016). Markov jump process $\sigma \varepsilon_{\alpha} \geq 2k_{\rm B}$

Ballistic transport

- Inertia of carriers
- Broken time-reversal symmetry
- Quantum effects

Bounding Precision

Classical Scattering Approach



Scattering map for $\zeta_E \equiv (\tau, p_\tau)_E$: $S_{E,B}: \zeta_E^{in} \mapsto S_{E,B}[\zeta_E^{in}] = \zeta_E^{out}$

Transmission coefficients:

$$\mathcal{T}_{E,\mathbf{B}}^{lphaeta}\equivrac{1}{h}\int_{eta}\!\!d\zeta_{E}^{\mathrm{in}}\!\int_{lpha}\!\!d\zeta_{E}\;\deltaig[\zeta_{E}^{\mathrm{out}}-\zeta_{E}ig]$$

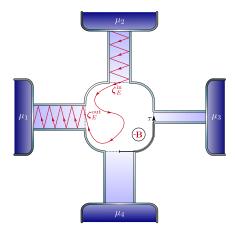
PS volume conservation

$$\sum\nolimits_{\beta} \mathcal{T}^{\alpha\beta}_{E,\mathbf{B}} = \sum\nolimits_{\beta} \mathcal{T}^{\beta\alpha}_{E,\mathbf{B}}$$

Time-reversal symmetry

$$\mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} = \mathcal{T}_{E,-\mathbf{B}}^{\beta\alpha}$$

Classical Scattering Approach



Scattering map for $\zeta_E \equiv (\tau, p_\tau)_E$: $S_{E,B}: \zeta_E^{in} \mapsto S_{E,B}[\zeta_E^{in}] = \zeta_E^{out}$

Transmission coefficients:

$$\mathcal{T}_{E,\mathbf{B}}^{lphaeta}\equivrac{1}{h}\int_{eta}\!d\zeta_{E}^{\mathrm{in}}\!\int_{lpha}\!d\zeta_{E}\;\deltaig[\zeta_{E}^{\mathrm{out}}-\zeta_{E}ig]$$

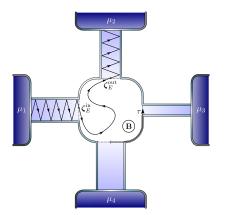
PS volume conservation

$$\sum\nolimits_{\beta} \mathcal{T}^{\alpha\beta}_{E,\mathbf{B}} = \sum\nolimits_{\beta} \mathcal{T}^{\beta\alpha}_{E,\mathbf{B}}$$

Time-reversal symmetry

$$\mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} = \mathcal{T}_{E,-\mathbf{B}}^{\beta\alpha}$$

Classical Scattering Approach



Mean currents and noise

$$J_{\alpha} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta} \mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} \left(u_{E}^{\alpha} - u_{E}^{\beta} \right)$$
$$S_{\alpha} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta \neq \alpha} \mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} \left(u_{E}^{\alpha} + u_{E}^{\beta} \right)$$

Dissipation

$$\sigma = \frac{k_{\rm B}}{h} \int_0^\infty dE \sum_{\alpha\beta} \mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} \mathcal{F}_{\alpha} \left(u_E^{\alpha} - u_E^{\beta} \right)$$

► Each reservoir injects uncorrelated and non-interacting particles into the conductor. Maxwell-Boltzmann distribution:

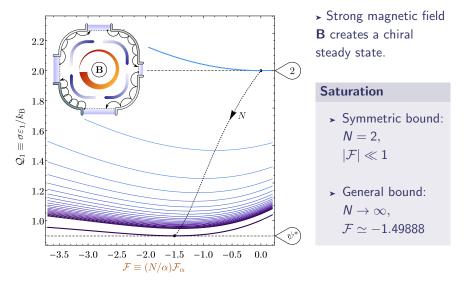
$$u_E^{lpha} \equiv \exp[-(E - \mu_{lpha})/(k_{
m B}T)]$$

Symmetric bound (B = 0)General bound (B \neq 0) $\sigma \varepsilon_{\alpha} \ge 2k_{\rm B}$ $\sigma \varepsilon_{\alpha} \ge \psi^* k_{\rm B}$ ($\psi^* \simeq 0.89612$)

> Breaking time-reversal symmetry by means of a magnetic field reduces the minimal thermodynamic cost of precision by a factor $\psi^*/2$.

Strategy

- ▶ Define $A_{\alpha}[x] \equiv \sigma/k_{\rm B} + \psi(2J_{\alpha}x + S_{\alpha}x^2)$ with $x \in \mathbb{R}$ and $\psi \in \mathbb{R}^+$.
- Find the largest ψ such that $A_{\alpha}[x] \geq 0$.
- > Minimizing $A_{\alpha}[x]$ with respect to x yields $\sigma \varepsilon_{\alpha} \geq \psi k_{\rm B}$.



Quantum Effects

Quantum vs Classical

Mean currents and noise (C) $J_{\alpha} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta} \mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} (u_{E}^{\alpha} - u_{E}^{\beta})$ $S_{\alpha} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta \neq \alpha} \mathcal{T}_{E,\mathbf{B}}^{\alpha\beta} (u_{E}^{\alpha} + u_{E}^{\beta})$

Maxwell-Boltzmann distribution: $u_E^{\alpha} \equiv \exp[-(E - \mu_{\alpha})/(k_{\rm B}T)]$ Mean currents and noise (Q)

$$J_{\alpha} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta} \hat{\mathcal{T}}_{E,\mathbf{B}}^{\alpha\beta} (f_{E}^{\alpha} - f_{E}^{\beta})$$

$$S_{lpha} = S_{lpha}^{
m cl} - S_{lpha}^{
m qu}$$

Fermi-Dirac distribution: $f_{E}^{\alpha} \equiv \left(1 + \exp[(E - \mu_{\alpha})/(k_{\rm B}T)]\right)^{-1}$

Noise components (Q)

$$S_{\alpha}^{cl} = \frac{1}{h} \int_{0}^{\infty} dE \sum_{\beta \neq \alpha} \hat{\mathcal{T}}_{E,\mathbf{B}}^{\alpha\beta} \left(f_{E}^{\alpha} (1 - f_{E}^{\beta}) + f_{E}^{\beta} (1 - f_{E}^{\alpha}) \right) \geq 0$$

$$S_{\alpha}^{qu} = \frac{2}{h} \int_{0}^{\infty} dE \sum_{\beta\gamma} \operatorname{tr} \left[\mathbf{T}_{E,\mathbf{B}}^{\alpha\beta} \mathbf{T}_{E,\mathbf{B}}^{\alpha\gamma} \right] \left(f_{E}^{\alpha} - f_{E}^{\beta} \right) \left(f_{E}^{\alpha} - f_{E}^{\gamma} \right) \geq 0$$

Quantum vs Classical

Uncertainty components

$$\varepsilon_{\alpha} = \varepsilon_{\alpha}^{\rm cl} - \varepsilon_{\alpha}^{\rm qu} \quad \varepsilon_{\alpha}^{\rm x} \equiv S_{\alpha}^{\rm x}/J_{\alpha}^{2}$$

Semiclassical bounds

$$\mathbf{B} = \mathbf{0}: \qquad \sigma \varepsilon_{\alpha}^{\text{cl}} \ge 2k_{\text{B}}$$
$$\mathbf{B} \neq \mathbf{0}: \qquad \sigma \varepsilon^{\text{cl}} \ge \psi^* k_{\text{B}}$$

> The quantum corrections $\varepsilon_{\alpha}^{\text{qu}}$ are second order in affinities \mathcal{F}_{α} and fugacities $\varphi_{\alpha} \equiv \exp \left[\mu_{\alpha}/(k_{\text{B}}T)\right]$.

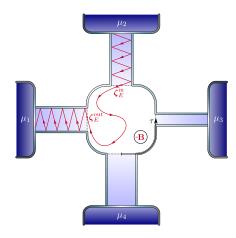
Perfect energy filter with $\Delta \ll k_{\rm B}T$:

$$\sigma \varepsilon^{
m cl}/k_{
m B} = \mathcal{F} \operatorname{coth}[\mathcal{F}/2]$$

 $\sigma \varepsilon/k_{
m B} = \mathcal{F}/\sinh[\mathcal{F}/2]$

► In the **deep quantum regime**, the thermodynamic cost of precision can be **reduced exponentially**.

Conclusions



- ► Inertia of carriers: Symmetric bound ($\mathbf{B} = 0$) $\sigma \varepsilon_{\alpha} \ge 2k_{\mathrm{B}}$
- Broken time-reversal symmetry:

General bound $(\mathbf{B} \neq 0)$

 $\sigma \varepsilon_{lpha} \geq \psi^* k_{
m B}$ ($\psi^* \simeq 0.89612$)

► Quantum regime:

Semiclassical bounds only

$$\mathbf{B} = \mathbf{0}: \qquad \sigma \varepsilon_{lpha}^{\mathrm{cl}} \geq 2k_{\mathrm{B}}$$

$$\mathbf{B} \neq \mathbf{0}$$
: $\sigma \varepsilon_{\alpha}^{\mathrm{cl}} \geq \psi^* k_{\mathrm{B}}$

Appendix

Strategy

- ▶ Define $A_{\alpha}[x] \equiv \sigma/k_{\rm B} + \psi(2J_{\alpha}x + S_{\alpha}x^2)$ with $x \in \mathbb{R}$ and $\psi \in \mathbb{R}^+$.
- Find the largest ψ such that $A_{\alpha}[x] \ge 0$.
- > Minimizing $A_{\alpha}[x]$ with respect to x yields $\sigma \varepsilon_{\alpha} \geq \psi k_{\rm B}$.

Symmetric case: $\boldsymbol{B}=0, \ \mathcal{T}_{E}^{\alpha\beta}=\mathcal{T}_{E}^{\beta\alpha}$

$$\begin{split} \mathcal{A}_{\alpha}[x] &= \sum_{\beta, \gamma \neq \alpha} \mathcal{V}^{\beta \gamma} \mathcal{D}_{\beta \gamma} \left(e^{\mathcal{D}_{\beta \gamma}} - 1 \right) / 2 \\ &+ \sum_{\beta \neq \alpha} \mathcal{V}^{\alpha \beta} \Big\{ \left(\mathcal{D}_{\alpha \beta} + 2\psi x \right) \left(e^{\mathcal{D}_{\alpha \beta}} - 1 \right) + \psi x^2 \left(e^{\mathcal{D}_{\alpha \beta}} + 1 \right) \Big\} \end{split}$$

 $\psi_{\rm max} = 2$

Strategy

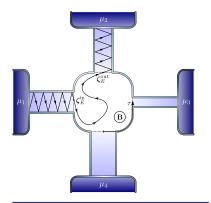
- ▶ Define $A_{\alpha}[x] \equiv \sigma/k_{\rm B} + \psi(2J_{\alpha}x + S_{\alpha}x^2)$ with $x \in \mathbb{R}$ and $\psi \in \mathbb{R}^+$.
- Find the largest ψ such that $A_{\alpha}[x] \ge 0$.
- > Minimizing $A_{\alpha}[x]$ with respect to x yields $\sigma \varepsilon_{\alpha} \geq \psi k_{\rm B}$.

General case: $\boldsymbol{B} \neq 0$, $\sum_{\beta} \mathcal{T}_{\boldsymbol{E}, \mathbf{B}}^{\alpha \beta} = \sum_{\beta} \mathcal{T}_{\boldsymbol{E}, \mathbf{B}}^{\beta \alpha}$

$$\begin{split} \mathcal{A}_{\alpha}[x] &= \sum_{\beta \neq \alpha} \sum_{\gamma} \mathcal{V}_{\mathbf{B}}^{\beta \gamma} \left(e^{\mathcal{D}_{\beta \gamma}} - 1 - \mathcal{D}_{\beta \gamma} \right) \\ &+ \sum_{\beta} \mathcal{V}_{\mathbf{B}}^{\alpha \beta} \Big\{ \left(1 + 2\psi x \right) \left(e^{\mathcal{D}_{\alpha \beta}} - 1 \right) + \psi x^{2} \left(e^{\mathcal{D}_{\alpha \beta}} + 1 \right) - \mathcal{D}_{\alpha \beta} \Big\} \end{split}$$

$$\psi_{\max} = \min_{y \in \mathbb{R}} \frac{(1 - e^y + ye^y)(e^y + 1)}{(e^y - 1)^2} \simeq 0.89612 \gtrsim 8/9$$

Quantum Scattering Approach in a Nutshell



Correspondence

PS trajectory Scattering state PS observable Hermitian operator Scattering matrix :

$$\mathsf{S}_{E,\mathsf{B}}$$
 : $|\Psi_{Elpha}^{ ext{out}}
angle = \sum_eta \mathsf{S}_{E,\mathsf{B}}^{lphaeta}|\Psi_{Eeta}^{ ext{in}}
angle$

Quantum transmission coefficients: $\hat{T}_{E,\mathbf{B}}^{\alpha\beta} \equiv 2 \mathrm{tr} [\mathbf{T}_{E,\mathbf{B}}^{\alpha\beta}], \ \mathbf{T}_{E,\mathbf{B}}^{\alpha\beta} \equiv \mathbf{S}_{E,\mathbf{B}}^{\alpha\beta} (\mathbf{S}_{E,\mathbf{B}}^{\alpha\beta})^{\dagger}$

Unitarity

$$\sum_{\beta} \hat{\mathcal{T}}_{E,\mathbf{B}}^{\alpha\beta} = \sum_{\beta} \hat{\mathcal{T}}_{E,\mathbf{B}}^{\beta\alpha}$$

Time-reversal symmetry

$$\hat{\mathcal{T}}_{E,\mathbf{B}}^{\alpha\beta} = \hat{\mathcal{T}}_{E,-\mathbf{B}}^{\beta\alpha}$$