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Quantum fluids Liquid Helium

Quantum fluids 3He and 4He

3He is a Fermi system
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Tools for probing quantum fluids

Classical tools for probing 3He and 4He

Characteristic scales in helium

Lengths:
3He 4He

Coherence length ξ0 50 nm 0.15 nm

Velocities:
3He 4He

First sound v1 250 m/s 238 m/s
Landau velocity vL 3 cm/s 60 m/s
Critical velocity vc 1 mm/s 10 cm/s
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Currently available tools

Vibrating wires:
Dimensions:
�3÷ 50µm× 5 mm
Operation frequencies:
f = 0.1÷ 10 kHz
Amplitudes:
A ∼ 10µm

Tuning forks: Dimensions:
6 mm× 1 mm× 0.2 mm
Operation frequencies:
f = 10÷ 100 kHz
Amplitudes:
A ∼ 1µm
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Miniaturisation Previous works

What has been done?

A. Kraus, et.al Nanotechnology 11, 165 (2000)

Nanomechanical vibrating wire resonator for
phonon spectroscopy in liquid helium.

Sample

Material:
Silicon+Metallisation (Ti/Au)

Density: ρSi = 2.3 g · cm−3

Youngs modulus: E = 47 GPa

Dimensions:
Length: L ∼ 1.2µm

Thickness:
H ≈ (Si) 400 nm + (Au) 50 nm

Width: W ≈ 200 nm

Linear mass density:
% ≈ 3× 10−10 kg ·m−1
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Miniaturisation Previous works

What has been done?

A. Kraus, et.al Nanotechnology 11, 165 (2000)

Nanomechanical vibrating wire resonator for
phonon spectroscopy in liquid helium.

Measurements

Magneto-driving mode
Applied power: −65÷−30 dBm

Magnetic field: 1 T

What can be improved?

Make beam sizes comparable with a
coherence length;

Decrease linear mass density – this
will increase sensitivity;
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Our experiments Experimental setup

Our experiments

Sample

Material: Aluminium

Superconductor with Tc ≈ 1.2 K
Density: ρAl = 2.7 g · cm−3

Youngs modulus: E = 70 GPa

Dimensions:

Length: L ∈ (1÷ 500)µm
Allows to cover the broad frequency
range from 1 kHz to 100 MHz

Width: W ≈ 0.1µm
Thickness: H ≈ 0.1µm

}
∼ ξ0

Linear mass density:
% ≈ 2.5× 10−11 kg ·m−1

Experimental setup
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Our experiments Vacuum measurements

Aluminium beams in vacuum

Harmonics

Fundamental frequency

f1 =
πW

3L2
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Stress analysis

Compressive stress at 300 K with f1 ≈ 230 kHz

Tensile stress at 4.2 K with
∆L

L
≈ 4× 10−4
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Our experiments Vacuum measurements

Power dependence in vacuum

Duffing oscillator
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Our experiments NEMS in a helium environment

Measurements in liquid helium

Duffing oscillator Resonance in liquid 4He
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Our experiments NEMS in a helium environment

Measurements in liquid helium

The temperature dependence of the resonance frequency in liquid 4He

(
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fluid back-flow︷ ︸︸ ︷
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√
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≈ 100 nm

There are two fitting parameters:
Experiment Theory

• β = 1.18± 0.02 β =
π

4

h

w
• B = 1.19± 0.01 B = 1
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Our experiments NEMS in a helium environment

Measurements in liquid helium

The temperature dependence of the resonance width in liquid 4He

∆f = C 1
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Normal fluid dragged in a layer of

thickness the viscous penetration

depth δ =
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There is one fitting parameter:

Experiment Theory
• C = 2.62± 0.06 • C = 2
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Our experiments NEMS in a helium environment

Comparison with other devices
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Our experiments NEMS in a helium environment

Comparison with other devices

Summary I

The damping mechanics of NEMS in liquid
helium at the temperatures spanning the
superfluid transitions is well described by the
hydrodynamic model in the framework of the
two fluid model;

The demonstrated sensitivity to the normal
fluid density of NEMS is better than sensitivity
of traditional instruments: quartz tuning forks
or vibrating wires.
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Our experiments Measurements at mK temperatures

Measurements in liquid at temperatures below 1K

The total damping:

Q−1
tot = Q−1

md +Q−1
int +Q−1

ph +Q−1
rot +Q−1

ac
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Measurements in liquid at temperatures below 1K

The total damping:

Q−1
tot = Q−1

md +Q−1
int +Q−1

ph +Q−1
rot +Q−1

ac

Magnetomotive losses:

Q−1
md ∝ B

2

Internal losses:
Superconducting Normal

Q−1
int ≈ 2× 10−7 Q−1

int ≈ 1× 10−6
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Our experiments Measurements at mK temperatures

Measurements in liquid at temperatures below 1K

The total damping:

Q−1
tot = Q−1

md +Q−1
int +Q−1

ph +Q−1
rot +Q−1

ac

Phonons scattering:

Q−1
ph ∝ T

4

Rotons scattering:

Q−1
rot ∝ exp

(
− ∆

kBT

)
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Our experiments Measurements at mK temperatures

Measurements in liquid at temperatures below 1K

The total damping:

Q−1
tot = Q−1

md +Q−1
int +Q−1

ph +Q−1
rot +Q−1

ac

Acoustic losses (dipole emission):

Q−1
ac = f20
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Our experiments Measurements at mK temperatures

Measurements in liquid at temperatures below 1K
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Our experiments Measurements at mK temperatures

Driving a nanomechanical resonator with “phonon wind” in superfluid 4He
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Our experiments Measurements at mK temperatures

Driving a nanomechanical resonator with “phonon wind” in superfluid 4He

Actuating force of the phonon wind obtained from
the experiment:
Fph ≈ 25 fN at 0.5 aW
Fph ≈ 62 fN at 3.5 aW of detected power.

From the simple arguments of the molecular kinetic
theory:

Fph = γnpphcphS,

the pnonon density in a pulse

nph ∼ 2× 1021 m−3
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Our experiments Measurements at mK temperatures

Quantum Probes for Quantum Fluids
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