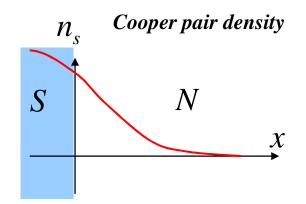

Jukka in Russia

Happy birthday!

ELECTROMAGNETIC PROXIMITY EFFECT IN PLANAR SUPERCONDUCTOR-FERROMAGNET STRUCTURES

A.S.Mel'nikov S.V.Mironov

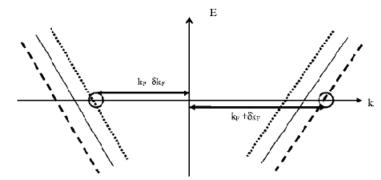

A.I.Buzdin


Institute for Physics of Microstructures RAS Universite Bordeaux I, France

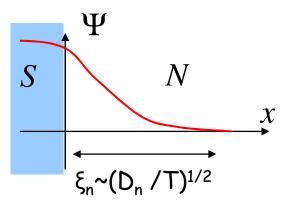
Outline

- Proximity effect and inverse proximity effect in SF systems
- > Spread of the stray magnetic field in SF bilayer
- **>** Role of the vector potential.
- Electromagnetic proximity effect in dirty and clean limits.
- **>** Discussion of some experiments

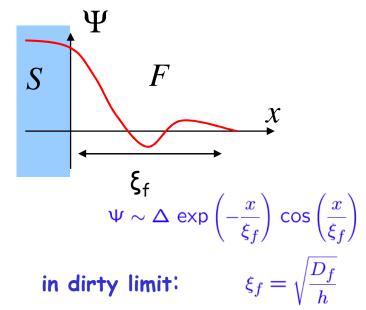
Proximity effect.

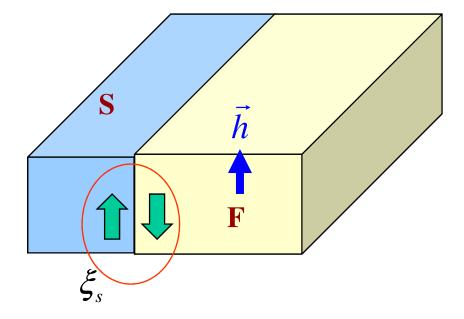


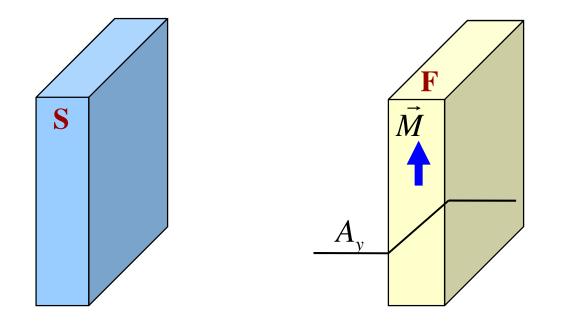
Proximity effect in FS structures.

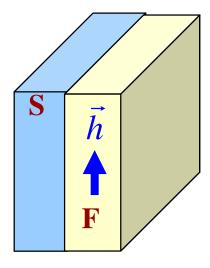

 $\delta \hat{H} = \vec{h} \, \hat{\vec{\sigma}}$ $h = exchange \ energy$

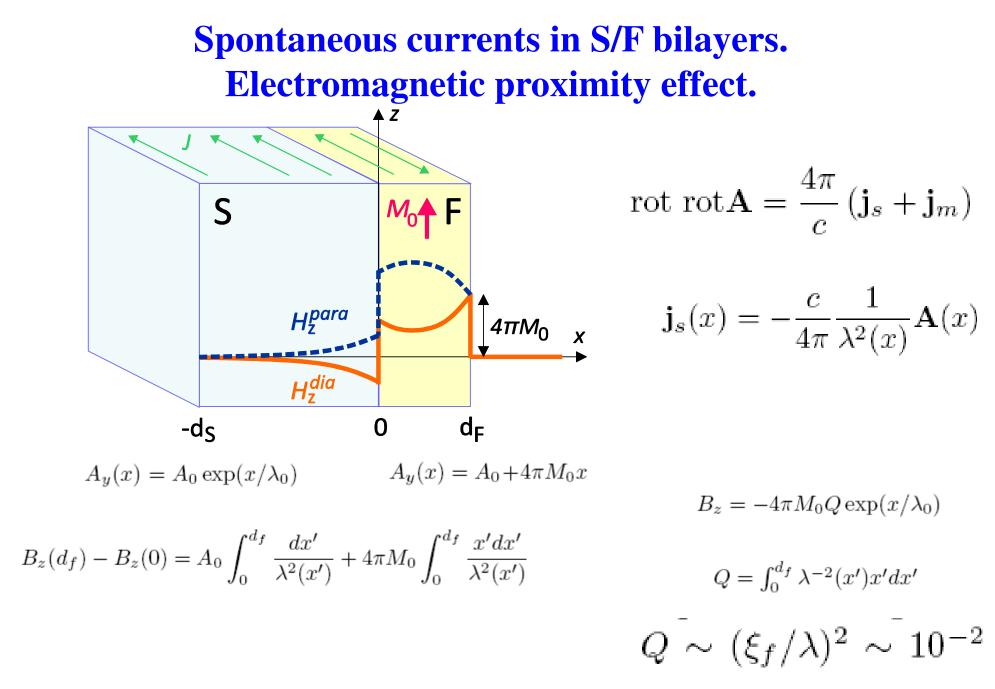
Inhomogeneous superconductivity induced by the exchange field:

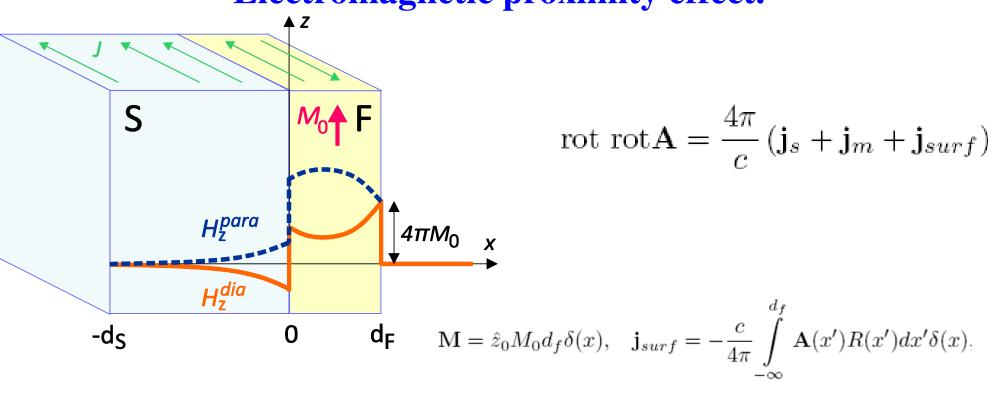

1. FFLO state


2. Interference effects for Cooper pairs in FS layered structures


Damped oscillatory dependence of pair wave function in ferromagnets


Inverse proximity effect in S/F bilayers. Electron spin polarization near the surface.

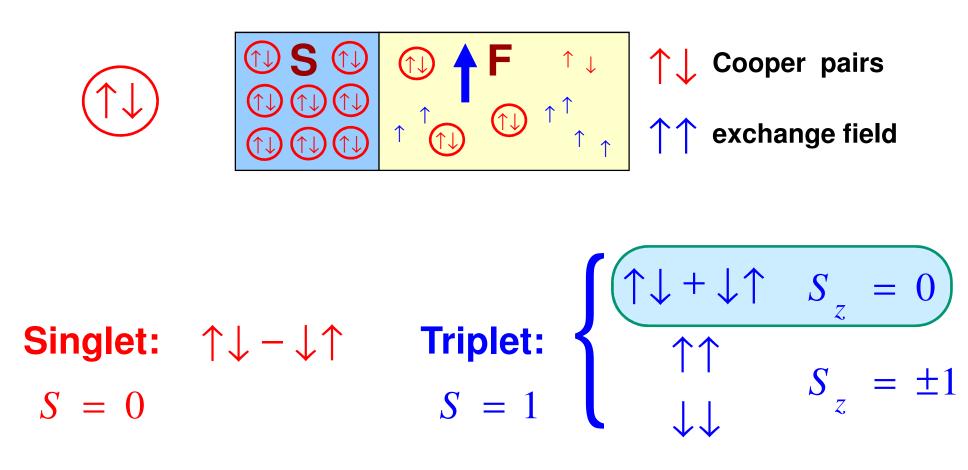

Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures. *Phys. Rev. B* 69, 174504 (2004). Electromagnetic proximity effect in S/F bilayers. Aharonov-Bohm effect?


Can the magnetic field (not just vector potential !) escape from ferromagnet to superconductor at large distances?

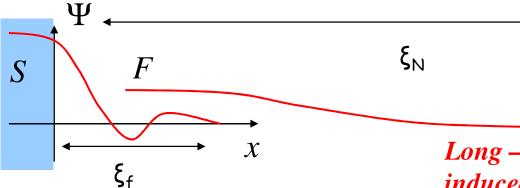
London equation
$$\vec{j} = -\frac{e^2 n_s}{mc} \vec{A}$$

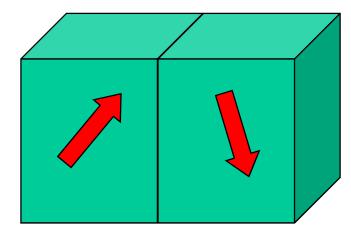
Spontaneous currents in S/F bilayers. Electromagnetic proximity effect.

$$\mathbf{j}_{surf} = -\hat{\mathbf{y}}_0 \frac{c}{4\pi} \delta(x) \left(A_0 P + 4\pi M_0 Q \right),$$


$$P = \int_{-\infty}^{d_f} R(x')dx', \quad Q = \int_{0}^{d_f} x'R(x')dx'.$$

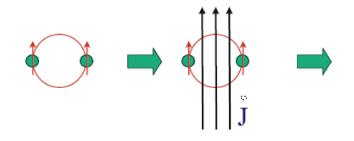
$$m_s = \int_{-d_s}^{0} \frac{B_z}{4\pi} dx = -M_0 Q\lambda \tanh\left(\frac{d_s}{2\lambda}\right)$$


$$B_z = -\frac{4\pi M_0 Q}{\sinh\left(d_s/\lambda\right)} \sinh\left(\frac{x+d_s}{\lambda}\right)$$

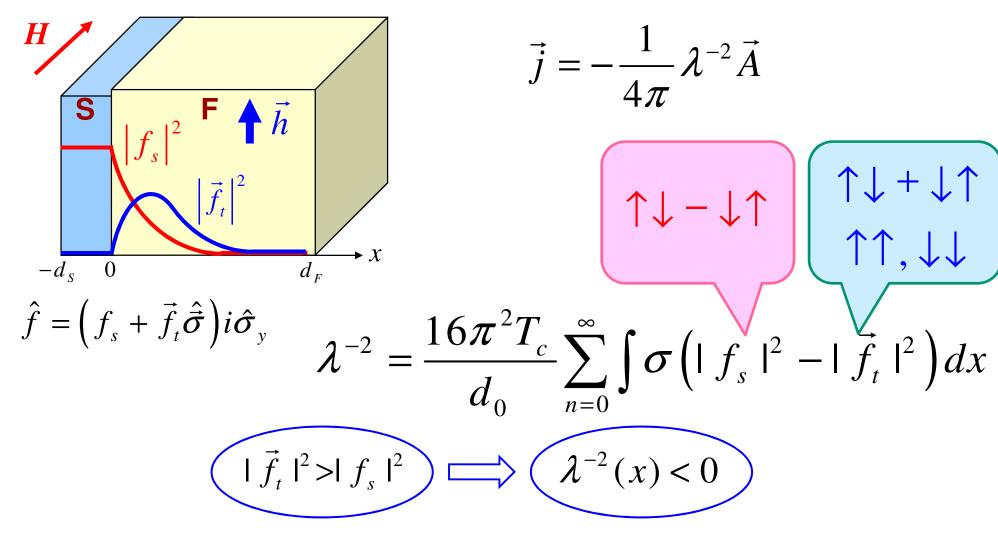

Proximity effect in S/F systems

Exchange field (energy) in the ferromagnet: $\hat{H} = ... + \vec{h} \, \hat{\vec{\sigma}}$

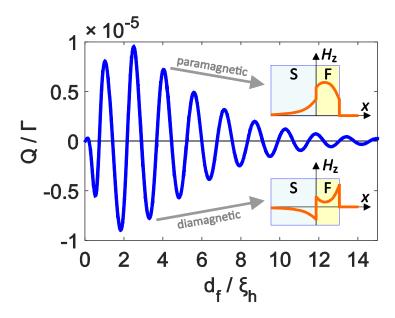
Long – range triplet proximity effect in dirty SF systems Bergeret – Volkov – Efetov (2001) Kadigrobov- Shekhter- Jonson (2001)



Long – range triplet component induced by inhomogeneous exchange field


$$\left(\frac{D}{2}\nabla^2 - \omega_n\right)f_s = -\mathbf{h}\mathbf{f}_t$$

$$\left(\frac{D}{2}\nabla^2 - \omega_n\right)\mathbf{f}_t = \mathbf{h}f_s$$



Paramagnetic Meissner effect in dirty S/F bilayers

Local paramagnetic response Can the superfluid density change its sign?

Meissner effect in clean S/F bilayers

$$\mathbf{j}_s(x) = -\frac{c}{4\pi} \int \mathbf{A}(x') K(x, x') dx'$$

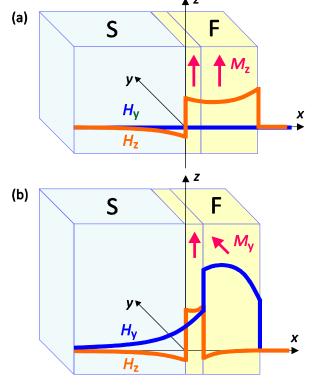
$$Q = \int_{-x_0}^{d_f} dx \int_0^{d_f} dx' x' \left[K(x, x') - \lambda_0^{-2} \delta(x - x') \theta(-x) \right]$$

$$Q = \Gamma \left(\frac{Td_f}{\hbar v_F}\right)^2 \operatorname{Re} \sum_{\omega > 0} \frac{T}{\Omega} \left\langle \frac{v_y^2}{v_F^2} \frac{1 + kd_f}{\cosh^2(pd_f + \chi)} \right\rangle$$

where $\Omega = \sqrt{\omega^2 + \Delta^2}$, $\sinh \chi = \omega/\Delta$, $k = 2\Omega/\hbar |v_x|$, $p = 2(\omega + i\hbar)/\hbar |v_x|$ $\Gamma = 8\pi^2 e^2 \nu_0 \hbar^2 v_F^4 / (c^2 T^2)$.

Effect of misalignment of magnetic moments

FIG. 3. The profiles of the spontaneous magnetic field in the superconductor-ferromagnet-ferromagnet trilayer when the magnetic moments in the two F layers are (a) parallel to each other and (b) perpendicular to each other.



Remotely induced magnetism in a normal metal using a superconducting spin-valve

M. G. Flokstra¹*, N. Satchell², J. Kim², G. Burnell², P. J. Curran³, S. J. Bending³, J. F. K. Cooper⁴, C. J. Kinane⁴, S. Langridge⁴, A. Isidori⁵, N. Pugach^{5,6}, M. Eschrig⁵, H. Luetkens⁷, A. Suter⁷, T. Prokscha⁷ and S. L. Lee¹

For our experiments we use superconducting spin-valve structures Au(x)/Nb(50)/Co(2.4)/Nb(3)/Co(1.2)/IrMn(4)/Co(3)/Ta(7.5)/Si-substrate with numbers indicating the layer thicknesses in nm and <math>x = 5 or 70. They consist of an S/F interface with an

PHYSICAL REVIEW LETTERS 120, 247001 (2018)

Editors' Suggestion

Observation of Anomalous Meissner Screening in Cu/Nb and Cu/Nb/Co Thin Films

M. G. Flokstra,^{1*} R. Stewart,¹ N. Satchell,² G. Burnell,³ H. Luetkens,⁴ T. Prokscha,⁴ A. Suter,⁴ E. Morenzoni,⁴ S. Langridge,² and S. L. Lee¹ ¹School of Physics and Astronomy, SUPA, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom ²ISIS, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom ³School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom ⁴Labor für Myonspinspektroskopie, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

(Received 3 March 2018; published 14 June 2018)

On the feasibility to study inverse proximity effect in a single S/F bilayer by polarized neutron reflectometry

Yu. N. Khaydukov^{a,b1}, B. Nagy^c, J.-H. Kim^b, T. Keller^b, A. Rühm^d, Yu. V. Nikitenko^e, K. N. Zhernenkov^f, J. Stahn^g, L. F. Kiss^c, A. Csik^h, L. Bottyán^c, V. L. Aksenov^{a,e,i}

 $V(40\,nm)/Fe(1\,nm)$

Ж
ЭТФ, 2016, том 149, вып. 4, стр. 852–863

© 2016

МАГНИТНЫЙ ЭФФЕКТ БЛИЗОСТИ НА ГРАНИЦЕ КУПРАТНОГО СВЕРХПРОВОДНИКА С ОКСИДНЫМ СПИНОВЫМ КЛАПАНОМ

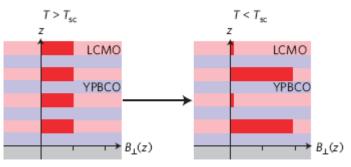
Г. А. Овсянников ^{a,b*}, В. В. Демидов ^a, Ю. Н. Хайдуков ^{c,d}, Л. Мустафа ^c,

К. И. Константинян^a, А. В. Калабухов^{b,d}, Д. Винклер^b

ISSN 1063-7745, Crystallography Reports, 2007, Vol. 52, No. 3, pp. 381–386. © Pleiades Publishing, Inc., 2007. Original Russian Text © V.L. Aksenov, Yu.V. Nikitenko, A.V. Petrenko, V.M. Uzdin, Yu.N. Khaidukov, H. Zabel, 2007, published in Kristallografiya, 2007, Vol. 52, No. 3, pp. 403– 409.

MAGNETISM AND STRONGLY CORRELATED ELECTRONIC SYSTEMS

Features of the Magnetic State of the Layered Fe–V Nanostructure of the Superconductor–Ferromagnet Type


V. L. Aksenov^{*a*, *b*}, Yu. V. Nikitenko^{*b*}, A. V. Petrenko^{*b*}, V. M. Uzdin^{*c*}, Yu. N. Khaidukov^{*b*}, and H. Zabel^{*d*}

mature materials

LETTERS PUBLISHED ONLINE: 15 FEBRUARY 2009 | DOI: 10.1038/NMAT2383

Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice

J. Hoppler^{1,2}, J. Stahn²*, Ch. Niedermayer², V. K. Malik¹, H. Bouyanfif^{1†}, A. J. Drew^{1†}, M. Rössle¹, A. Buzdin³, G. Cristiani⁴, H.-U. Habermeier⁴, B. Keimer⁴ and C. Bernhard¹*

Josephson-type experiment to observe electromagnetic proximity effect

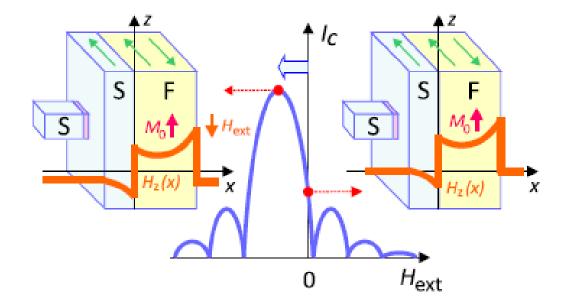


FIG. 4. Shift in the Fraunhofer critical current oscillations for the Josephson junction with one electrode being covered by the ferromagnetic layer.

